
ZEILBERGER’S ALGORITHM - EXISTENCE OF THE TELESCOPED
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MAT625 SEMINAR: AUTOMATIC PROOFS OF BINOMIAL SUM IDENTITIES

ALAIN SCHMID

Note that in the following, I always assume that 0 ∈ N. All statements, proofs, ideas and
remarks are taken from or based on sections 3.2, 4.4, 6.1 and 6.2 of the book A = B by
Marko Petkovšek, Herbert S. Wilf and Doron Zeilberger (A K Peters, Ltd., 1996).

1. Setting

We consider a sum of the form

f (n) =
∑
k

F (n, k) ,

for n, k such that the terms F (n, k) are well-defined and hypergeometric.

Definition. A term F (n, k) is a hypergeometric term in both arguments, if

F (n + 1, k)

F (n, k)
and

F (n, k + 1)

F (n, k)

are both rational functions of n and k.

The aim of this considerations is a proof, which provides (under the further little assump-
tion that the terms F (n, k) are even proper hypergeometric) the existence of some index

J ∈ N>0, polynomials
(
aj
)J
j=0

in C[n], not all zero, and a term G (n, k) such that

J∑
j=0

aj (n)F (n + j, k) = G (n, k + 1)−G (n, k)

(called a telescoped recurrence).
The motivation behind this proof is based on the fact, that Zeilberger’s algorithm relies
on this existence result. In more details, it doesn’t use it in a constructive way, but the
existence is important to be sure that the algorithm is deterministic. In a bigger picture,
such a telescoped recurrence is desirable to have, since if we assume G to have finite
support, summing both sides over k and dividing by the size of the support of G (n, k) as
a function of k leads to
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J∑
j=0

aj (n) f (n + j) = 0.

Now (as explained in many details in Noam Szyfer’s report), there are several cases: J = 0,
J = 1 and J > 1. If J < 2, it is possible to find directly a closed form for f (n). For the
case when J > 1, it is also possible to find directly a closed form, if the coefficients aj (n)
are constant (which in this case corresponds to solving a linear recurrence). All other cases
can be handled by other algorithms. To summarize: If we can find a telescoped recurrence
and G has finite support, we are able to solve the problem to write f (n) in a closed form.

2. Statement

Definition. A term F (n, k) is proper hypergeometric if it can be written in the form

F (n, k) = P (n, k)

∏q
i=1 (ain + bik + ci)!∏r
j=1 (uin + vik + wi)!

xk,

where x ∈ C, P ∈ C[n, k], ai, bi, uj , vj ∈ Z for all i ∈ {1, ..., r}, j ∈ {1, ..., q} and r, q ∈ Z≥0.

Note that clearly every proper hypergeometric term F (n, k) is hypergeometric. In fact,
for the existence of a recurrence in telescoped form, we will assume that F (n, k) is proper
hypergeometric. The reason for this is, that we want to be able to apply the Fundamen-
tal Theorem about the existence of a 2-variable recurrence, and then get our 1-variable
recurrence from that.
Precisely, we will prove the following main statement:

Theorem. Let F (n, k) be a proper hypergeometric term. Then there are J ∈ N>0, polyno-

mials
(
aj
)J
j=0

in C[n], not all zero, and a function G (n, k) such that (whenever F (n, k) 6= 0

and all appearing terms of the form F (n + j, k) are well-defined)

J∑
j=0

aj (n)F (n + j, k) = G (n, k + 1)−G (n, k)

and G(n,k)
F (n,k) is a rational function.

3. Preparation for the proof

Theorem. (Fundamental theorem, first part)
Let F (n, k) be a proper hypergeometric term. Then there exist I, J ∈ N>0 and polynomials
aij ∈ C[n] for i = 0, ..., I, j = 0, ..., J , not all zero, such that

I∑
i=0

J∑
j=0

aij (n)F (n− j, k − i) = 0

whenever F (n, k) 6= 0 and all appearing terms of the form F (n− j, k − i) are well-defined.
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Definition. (Shift Operators)
If p (n) (resp. u (k)) is a term dependent on n (resp. k), then define

N
(
p (n)

)
:= p (n + 1) and K

(
u (k)

)
:= u (k + 1) .

I will use (as in the book) some ”distributive notation”, i.e.(
aNnKk + bK lNm + c

) (
F (n, k)

)
:=

aNn
(
Kk
(
F (n, k)

))
+ bK l

(
Nm

(
F (n, k)

))
+ cF (n, k)

for a, b, c ∈ C, n, k, l,m ∈ N.

Lemma 1. Let P ∈ C[u, v, w] be a polynomial. Then there exists a polynomial Q ∈
C[u, v, w] such that

P (u, v, w) = P (u, v, 1) + (1− w)Q (u, v, w) .

Proof. Idea: Consider P as a polynomial of one variable w (u, v are parameters) and
consider its Taylor series in w = 1
Let P ∈ C[u, v, w] be a polynomial. Its Taylor series in w = 1 is

∞∑
n=0

∂nP
∂wn (u, v, 1)

n!
(w − 1)n ,

a finite sum (since P is a polynomial). Thus there exists a polynomial Q ∈ C[u, v, w] such
that

P (u, v, w) = P (u, v, 1) + (1− w)Q (u, v, w) ,

i.e. choose

Q (u, v, w) := −

 ∞∑
n=1

∂nP
∂wn (u, v, 1)

n!
(w − 1)n−1

 .

Alternatively : Consider the polynomial divison of P (u, v, w) by (1− w). There exist po-
lynomials T,Q ∈ C[u, v, w] such that

P (u, v, w) = T (u, v, w) + (1− w)Q (u, v, w)

and the degree of T in w is 0 (since deg (1− w) = 1). Thus T is constant in w. By
evaluating both sides in w = 1, we immediately get

P (u, v, 1) = T (u, v, 1) = T (u, v, w) ,

which shows the lemma. �

Lemma 2. Let Q ∈ C[x, y, z] and F (n, k) be a hypergeometric term in both arguments.
Then Q (N,n,K)F (n, k) is a rational multiple of F (n, k).
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Proof. Let F (n, k) be a hypergeometric term in both arguments and Q ∈ C[x, y, z]. Then
Q(N,n,K)F (n,k)

F (n,k) can be written in the form∑
(i,j)∈A

aij (n)
F (n + i, k + j)

F (n, k)

for some finite A ⊂ N2 and aij ∈ C[n] for all (i, j) ∈ A. Note that for each (i, j) ∈ A

F (n + i, k + j) =
F (n + i, k + j)

F (n + i− 1, k + j)
F (n + i− 1, k + j)

and F (n+i,k+j)
F (n+i−1,k+j) is a rational function. Thus (by iterating this procedure) there is some

rational function R (n, k) such that

F (n + i, k + j) = R (n, k)F (n, k + j) .

With the same argument as before, we find also a rational function S (n, k) such that

F (n, k + j) = S (n, k)F (n, k) .

Thus
F (n + i, k + j)

F (n, k)
= R (n, k)S (n, k) .

Since rational functions multiplied by a polynomial and sums of rational functions are
rational functions, the claim follows. �

4. Proof

The proof is constructive, i. e. it gives an algorithm for finding a recurrence in telesco-
ped form. However, it is not used in Zeilberger’s algorithm, since there is a much faster
alternative. We only need the proven existence of such a recurrence (to apply Zeilberger’s
algorithm).
The strategy is the following:

(i) Take the provided 2-variable recurrence from the fundamental theorem.
(ii) Reorder the terms such that we get a recurrence in the desired form which is

independent of k.
(iii) Show (from this form) that the provided function G (n, k) is a rational multiple

of F (n, k).
(iv) Prove by contradiction that the found recurrence is nontrivial.

Proof. (i) Let F (n, k) be a proper hypergeometric term. Then, using the first part
of the fundamental theorem, there exist I, J ∈ N>0 and polynomials aij ∈ C[n]
for i ∈ {0, ..., I}, j ∈ {0, ..., J}, not all zero, such that

I∑
i=0

J∑
j=0

aij (n)F (n + j, k + i) = 0 (1)
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whenever F (n, k) 6= 0 and all of the values F (n + j, k + i) are well-defined. Using
the notion of shift operators, (1) can be written in the form

P (N,n,K)
(
F (n, k)

)
= 0 (2)

for some polynomial P ∈ C[u, v, w|.
(ii) The goal in this step is to get rid of K on the left side. Using Lemma 1, it’s

possible to find a polynomial Q ∈ C[u, v, w] such that

P (u, v, w) = P (u, v, 1) + (1− w)Q (u, v, w) . (3)

Plugging this into (2) yields

P (N,n, 1)
(
F (n, k)

)
+ (1−K)

(
Q (N,n,K)

(
F (n, k)

))
= 0

which is equivalent to

P (N,n, 1)
(
F (n, k)

)
= (K − 1)

(
Q (N,n,K)

(
F (n, k)

))
. (4)

Observe that the left hand side doesn’t vary in k (i.e. it is independent of the shift
operator K). Define

G (n, k) := Q (N,n,K)
(
F (n, k)

)
,

then, using (4),

P (N,n, 1)
(
F (n, k)

)
= (K − 1)G (n, k) = G (n, k + 1)−G (n, k) . (5)

(iii) Using Lemma 2 (applied to G (n, k)), it follows that

G (n, k)

F (n, k)

is rational.
(iv) It remains to prove, that the recurrence on the left hand side of (5) is non-trivial.

For that sake, note first that (from the fundamental theorem) P (N,n,K) 6≡ 0.
Choose P (N,n,K) such that it fulfills this property and (2) with the least possible
degree in K. Then, using (3), write

P (N,n,K) = P (N,n, 1) + (1−K)Q (N,n,K) .

Now (for the proof of contradiction) assume that P (N,n, 1) ≡ 0. Note that (by
definition of P ), P (N,n,K)F (n, k) = 0. Therefore P (N,n, 1) ≡ 0 implies that

G (n, k + 1)−G (n, k) = (K − 1)
(
Q (N,n,K)

(
F (n, k)

))
= 0,

which shows that (under this assumption) G (n, k) is independent of k. Thus G
is a hypergeometric term only dependent on n, i.e.

G (n + 1, k)

G (n, k)
= g (n)

where g (n) is a rational function only dependent on n. Thus(
N − g (n)

) (
G (n, k)

)
= 0.

Alain Schmid 5



Seminar:
Autom. pr. on binomial sum identities Written report

Spring semester 2020
7. Mai 2020

Since g (n) is rational there exist a, b ∈ C[n] such that

g (n) =
a (n)

b (n)
.

Hence (
b (n)N − a (n)

)
G (n, k) = 0,

i.e. we have found a recurrence of order 1 for G (n, k). Now we distinguish between
two cases. First, if Q ≡ 0, then we get immediately a contradiction, since this
implies that

P (N,n,K) = P (N,n, 1) ,

but P (N,n,K) 6≡ 0 and P (N,n, 1) ≡ 0. For the case where Q 6≡ 0, note that(
b (n)N − a (n)

) (
G (n, k)

)
= 0.

So, (
b (n)N − a (n)

) (
Q (N,n,K)

(
F (n, k)

))
= 0

is a nontrivial recurrence for F (n, k), which also yields a contradiction since the
degree in K of

(
b (n)N − a (n)

)
Q (N,n,K) is (by definition of Q) strictly smaller

than the degree in K of P (N,n,K).
The conclusion of (i) - (iv) is, that the claimed statement is true and P (N,n, 1) is the
desired nontrivial recurrence in telescoped form, which always exists (under certain quite
general assumptions for F (n, k)). �
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